SMock Documentation
Release 0.0.7

bprinty

Feb 01, 2019

Contents

Overview 1
Content: 3
2.1 Installation e e e e e e e 3
2.2 USAZE . v v v e e e e e e e e e e e e e e e 3
2.3 APL . . e e 9
Indices and tables 11

CHAPTER 1

Overview

The faux provides utilities for mocking responses from external services during testing. With faux, you can easily
serve a directory structure mocking url endpoints for an externally managed service and use that server for testing.

For documentation on how to use this package, see the Usage section of the documentation.

http://github.com/bprinty/faux
./usage.html

SMock Documentation, Release 0.0.7

2 Chapter 1. Overview

CHAPTER 2

Content:

2.1 Installation

2.1.1 Through pip

’$ pip install gems

2.1.2 Via GitHub

$ git clone http://github.com/bprinty/faux.git
$ cd faux
$ python setup.py install

2.1.3 Questions/Feedback

File an issue in the GitHub issue tracker.

2.2 Usage

The sections below detail different paradigms for using this library. In the documentation below, you’ll learn how
to use faux for: 1) mocking a filesystem during testing, 2) defining a test fixture for mocking an external service,
3) mocking dynamic requests with random data, and 4) pulling mock data from an external service for downstream
testing.

https://github.com/bprinty/faux/issues

SMock Documentation, Release 0.0.7

2.2.1 Filesystem Mocking

For instance, if you have a directory structure that looks like the following:

_uuid
file
query/

With the following as contents of the files in that directory structure:

_uuid
{
"status": "ok",
"ecity": "{{city}}"
}
file
{
"status": "ok",
"month": "{{month}}",
}
query/arg=test
{
"status": "ok",
"arg": "test",

"digit": {{random_digit}}

query/data

{
"status": "ok",
"data": "test"

You can serve the directory structure using (the -P option below is specifying a specific port):

~$ faux serve —-P 1234 /path/to/directory

And endpoints mirroring that file structure will be available:

>>> import requests
>>> r = requests.get ('http://localhost:1234/4db5fd8c-8aa6-4c29-b979-dab3ce7lebde")
>>> print (r.Jjson())
{
"status": "ok",
"city": "Sacramento",

>>> r = requests.get ('http://localhost:1234/file")
>>> print (r.json())

"status": "ok",
"month": "05"

(continues on next page)

4 Chapter 2. Content:

SMock Documentation, Release 0.0.7

(continued from previous page)

>>> r = requests.get ('http://localhost:1234/query?arg=test"')
>>> print (r.json())

"status": "ok",
llargll. "testll

. ’
"digit": 4

>>> r = requests.get ('http://localhost:1234/query/data')
>>> print (r.json())

"status": "ok",
"data". "test"

It’s also worth noting (alluded to above) that you can mock arbitrary data in your responses using methods from the
faker library. Items like { {city}} and { {month} } above were automatically and randomly filled without outputs
from a faker.Faker () object during the request. For more information about the types of data you can fake, see
the faker documentation.

One other special file above is the _uuid file, which will return data from the _uuid file whenever a uuid is included
as part of the request.

2.2.2 Endpoint Mocking

Along with mocking endpoints via filesystem contents, you can also mock endpoints dynamically using the faux
library. Here’s and example of how to set up dynamic mocks:

imports
from faux import Server

set up app
app = Server(__name__, cache='/path/to/directory’')

define routes for testing
Qapp.route('/simple', methods=['GET', 'POST', 'PUT', 'DELETE'])
def simple():

mmon

Simple endpint with get/post

mmn

return {

'status': 'ok',

'uuid': '{{uuid}}"',
'name': '{{name}}"',
'address': '{{address}}'

Qapp.route ('/nested/<param>', methods=['GET', 'POST', 'PUT', 'DELETE'])
def nested(param) :

mmn

Manage server state.
mrmmn
return {
'status': 'ok',
'param': param,

(continues on next page)

2.2. Usage 5

https://pypi.org/project/Faker/
https://faker.readthedocs.io/en/master/

SMock Documentation, Release 0.0.7

(continued from previous page)

'company': '{{company}}"',
'number': '{{random_int}}"',
}
run
if name == '_ main__ ':

import time
with app.run(port=1234, debug=True) :
while True:
time.sleep(l)

Note that faux uses Flask under the hood to manage endpoint resolution and routing, so the API for this library is
very similar to the Flask API. The code above will allow you mock all of the contents of a specified directory, and also
the dynamic mocks you’ve configured with the route decorator:

>>> import requests
>>> r = requests.get ('http://localhost:1234/query/data’)
>>> print (r.json())
{
"status": "ok",
"data": "test"

>>>
>>> r = requests.get ('http://localhost:1234/simple’)
>>> print (r.Jjson())

"status": "ok",

"uuid": "4db5fd8c-8aa6-4c29-b979-dab3ce7lecde",

"name": "Gary Armstrong",

"address": "97183 Orozco Islands Suite 483\nAndersonton, KS 57080"

>>>
>>> r = requests.get ('http://localhost:1234/nested/test")
>>> print (r.Jjson())

"status": "ok",
"param": "test",
"company": "Perez PLC",
"number": "8032",

2.2.3 Testing Fixtures

One of the most common paradigms for using this software is to mock a service during testing. To do so with this
module, you can easily set up a py.test fixture that will run throughout your test session:

import unittest
import pytest

RESOURCES = '/path/to/testing/resources’

@pytest. fixture (scope='session')

def server():
mmwn

Set up mock server for testing request caching.

(continues on next page)

6 Chapter 2. Content:

http://flask.pocoo.org/

SMock Documentation, Release 0.0.7

(continued from previous page)

mon

from faux import Server

app = Server(__name__, cache=RESOURCES)
with app.run (port=1234):

yield
return

Once you’ve defined the fixture, you can use it on a test class or function like so:

test function
@pytest .mark.usefixtures ("server")
def test_function():

return

test class
@pytest .mark.usefixtures ("server")
class TestClass (unittest.TestCase) :
def test_method() :
return

With the code above, the server you’re mocking will run throughout your testing session and will gracefully exit when
the test session stops.

2.2.4 Caching Request Data

Along with serving a directory structure with request data, you can generate that directory structure by querying data
from an existing server. For example, if we already had a service that provided the endpoints we tried to mock above,
we could query and save that data in a directory structure (for mocking later on) like so:

>>> from faux import requests

>>> requests.cache ('/path/to/cache/directory")

>>> requests.get ('http://localhost:1234/file'")

>>> requests.get ('http://localhost:1234/query?arg=test')

>>> requests.get ('http://localhost:1234/query/data’)

>>> requests.post ('http://localhost:1234/query', Jjson={'data': 'test'})

And the contents of our cache directory will look like:

GET/
|: _uuid
query/
data
arg=test
POST/
L— query/
L— 91cc355

With the files above containing the data from those requests. After generating that cache directory, you can turn around
and serve it for testing using faux serve or using a test fixture.

2.2.5 Command-Line

Along with the serve entrypoint, here is the full set of command-line options available from the faux entry-point:

2.2. Usage 7

SMock Documentation, Release 0.0.7

~$ faux -h
usage: faux [-h] {version,status, serve}

positional arguments:
{version, status, serve}

optional arguments:
-h, —--help show this help message and exit

Starting a Server

To start a faux server with an existing directory, you can use the serve entrypoint:

~$ faux -h
usage: faux serve [-h] [-P PORT] [-n NAME] [-t TIMEOUT] [-1 LOG_LEVEL] path

positional arguments:
path Directory structure to serve.

optional arguments:

-h, —-help show this help message and exit

-P PORT, —--port PORT Port to run server on.

-n NAME, —--name NAME Optional name for server.

-t TIMEOUT, --timeout TIMEOUT
Timeout for stopping server (seconds).

-1 LOG_LEVEL, --log-level LOG_LEVEL
Logging verbosity (DEBUG, INFO, ERROR, WARNING,
CRITICAL, etc ...). Default is INFO

Example:

~$ faux serve —-P 1234 -1 INFO -t 100 /path/to/directory

Checking the Status of a Server

To check the status of a running server, you can use the status entrypoint:

~$ faux -h
usage: faux status [-h] [-S] [-H HOST] [-P PORT]

optional arguments:

-h, --help show this help message and exit
-S, —-ssl Use ssl for connecting to server.
—-H HOST, —--host HOST Host to check.
-P PORT, —--port PORT Port to check.

Example:

~$ faux status -P 1234
{'status': 'ok'}

2.2.6 Questions/Feedback

File an issue in the GitHub issue tracker.

8 Chapter 2. Content:

https://github.com/bprinty/faux/issues

SMock Documentation, Release 0.0.7

2.3 API

2.3.1 Caching Request Data
faux.client.get (*args, **kwargs)
Sends a GET request.
Parameters
* url — URL for the new Request object.
* params — (optional) Dictionary, list of tuples or bytes to send in the body of the Request.
* xxkwargs — Optional arguments that request takes.
Returns Response object
Return type requests.Response

faux.client .post (*args, **kwargs)
Sends a POST request.

Parameters
e url — URL for the new Request object.

* data - (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of
the Request.

* json — (optional) json data to send in the body of the Request.
* xxkwargs — Optional arguments that request takes.

Returns Response object

Return type requests.Response

faux.client.put (*args, **kwargs)
Sends a PUT request.

Parameters
* url — URL for the new Request object.

* data — (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of
the Request.

* json — (optional) json data to send in the body of the Request.
* xxkwargs — Optional arguments that request takes.

Returns Response object

Return type requests.Response

faux.client.delete (*args, **kwargs)
Sends a DELETE request.

Parameters
* url — URL for the new Request object.

* xxkwargs — Optional arguments that request takes.

Returns Response object

Return type requests.Response

2.3. API

SMock Documentation, Release 0.0.7

2.3.2 Mocking Servers
class faux.server.Server (*args, **kwargs)
Object mimicking flask server to allow for spinning up server mock.
init ()
Method for decorating custom url handlers on server.

logger
Expose flask logger so user can change settings.

TODO: update this class to use __getattr__ for defaulting to internal getattr(self.flask, item)

route (*args, **kwargs)
Override flask route decorator to provide easier UX for return data. With these changes, users can simply
return a dictionary or xml Element object instead of needing to craft a full response.

class faux.server.Instance (app, **kwargs)
Contextmanager for running managing server mock.

10 Chapter 2. Content:

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

11

SMock Documentation, Release 0.0.7

12 Chapter 3. Indices and tables

Index

D

delete() (in module faux.client), 9

G

get() (in module faux.client), 9

init() (faux.server.Server method), 10
Instance (class in faux.server), 10

L

logger (faux.server.Server attribute), 10

P

post() (in module faux.client), 9
put() (in module faux.client), 9

R

route() (faux.server.Server method), 10

S

Server (class in faux.server), 10

13

	Overview
	Content:
	Installation
	Usage
	API

	Indices and tables

